Umirs www.umirs.ru

РАДИОЛОКАЦИОННЫЕ КОМПЛЕКСЫ ОБНАРУЖЕНИЯ

ТИПЫ РАСПОЗНАВАЕМЫХ ОБЪЕКТОВ

Земная поверхность

WNROLLIOC

человек

группа людей транспортное средство

гидроцикл

катер

безэкипажный катер (БЭК)

особенности комплексов РАДЕСКАН

Автоматическое обнаружение наземных и надводных целей

Наведение поворотных видеокамер и/или тепловизоров на обнаруженные цели

Дополнительная охрана существующего периметра

Организация виртуальных рубежей охраны

Автоматическое обнаружение потенциальных нарушителей, приближающихся к охраняемой зоне

Обнаружение «внутренних» нарушителей

Круглосуточный всепогодный мониторинг

Определение до 32 целей, их координат, скорости и направления движения

Применение произвольного количества РЛС на одном АРМ-оператора

Сектор обзора от 60° до 360°

Возможность интеграции в различные программные комплексы

ПРИМЕНЕНИЕ НА ОБЪЕКТАХ КРИТИЧЕСКИ ВАЖНОЙ ИНФРАСТРУКТУРЫ

ОБЩАЯ СТРУКТУРА КОМПЛЕКСА ПРОТИВОДЕЙСТВИЯ БВС «РАДЕСКАН»

Серия комплексов «РАДЕСКАН» разработана на базе унифицированных модулей для различных вариантов комплектаций, работающих в секторах 60°, 90°, 120°, 180°, 240°, 270°, 300° и 360° по азимуту.

Основные преимущества комплекса

по сравнению со средствами обнаружения с механическим сканированием пространства

Используется различное графическое представление движущихся объектов на карте объекта охраны в зависимости от величины оцененной ЭПР объектов.

Нет механического вращения антенны. Нет дорогой по цене активной фазированной решетки.

Частота обновления информации **5 Гц** — пять раз в секунду. Вращающиеся антенны обновляют информацию 0,5—1 раз в секунду. Это приводит к неоднозначному обнаружению цели.

Есть продвинутый аппаратный фильтр-классификатор: растение/полезный объект. Можно комбинировать различные фильтры в реальном времени.

Доступна настройка времени отображение трека на карте и его автоматическое удаление (стирание) по истечении этого времени.

После обнаружении цели радиолокатором производится захват цели средствами видеоаналитики. И ими осуществляется управление поворотной платформой в дальнейшем.

Предусмотрена внутренняя диагностика аппаратуры РЛС в реальном времени, а также оценка помеховой обстановки во время работы (активные и пассивные помехи) и сигнализация (отображение) ее в графическом виде на карте.

Программное обеспечение комплекса «Радескан»

Серверная стойка комплекса «МУРЕНА-КС»

МОДУЛИ КОМПЛЕКСА «РАДЕСКАН»

PAДЕСКАН S-90°

радиолокационная станция

Когерентная твердотельная электронная РЛС Sдиапазона, без движущихся механических частей в конструкции. В электронике изделия реализован цифровой алгоритм синтеза зондирующих сигналов и обработки сигналов, отражённых от цели. РЛС предназначается для обнаружения движущихся объектов, таких как люди, крупные животные, автомобили, катера и другие транспортные средства.

Для каждой цели, обнаруженной РЛС в рабочем секторе обзора, определяются следующие данные:

- азимут цели;
- дальность до цели;
- вектор скорости (направление движения);
- -ЭПР (эффективная площадь рассеяния цели).

Полученные данные позволяют строить траекторию движения цели в реальном масштабе времени и управлять поворотной платформой, на которой установлена телекамера или тепловизор. Траектория движения отображается на мониторе оператора и может быть «наложена» на план местности или спутниковую фотографию местности.

Алгоритмы адаптивной фильтрации, используемые в РЛС, эффективно подавляют помехи, вызванные качаюшимися растениями (высокая трава, кустарник, деревья) или волнами на акватории.

Технически	е характеристики РЛС «Радескан»
Максимальная дальность обнаружения: - человек, ЭПР 0,5 м², не менее - транспортное средство, ЭПР 3 м², не менее	2000 м 3000 м
Диапазон рабочих частот	S
Средняя мощность излучения, не более	100 мВт
Протяженность рабочего сектора, не менее	3000 м
Минимальная дальность обнаружения, не более	20 м
Ширина рабочего сектора, не уже	90 градусов
Точность определения дальности объекта	1 м
Внешние интерфейсы	RS-485, Ethernet, сухой контакт
Минимальное количество одновременно вычисляемых траекторий обнаруженных объектов, не менее	32
Диапазон рабочих температур	-40°C+60°C
Потребляемая мощность, не более	10 Вт
Среднее время наработки на отказ, не менее	60 000 часов
	i dentricia istaturaren menmenera er

ВАРИАНТ ИСПОЛНЕНИЯ КОРТ* РАДЕСКАН S-90°

		ПОВОРОТНАЯ ПЛАТФОРМА	ТЕПЛОВИЗОР ВАРИАНТ 1	ТЕПЛОВИЗОР ВАРИАНТ 2	ВИДЕОМОДУЛЬ АО «ЮМИРС»
Исполнение	Обозначение				D. D.
«Т»	ЮСДП.425918.020	+	+	-	-
«В»	ЮСДП.425918.020-01	+	_	_	+
«ВТ»	ЮСДП.425918.020-02	+	+	_	+
«Д»	ЮСДП.425918.020-04	+	_	_	+

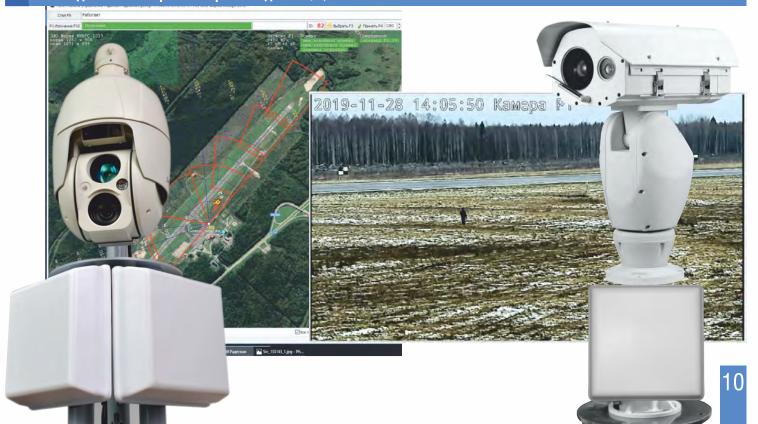
Окно «Панели управления Радескан» на APM оператора

PAДЕСКАН X-90°

радиолокационная станция

Варианты исполнения РЛС

Исполнение	Обозначение	Дальность обнаружения цели
Радескан-X-500-90 ⁰	ЮСДП.425918.020-53	500 м
Радескан-X-1000-90 ⁰	ЮСДП.425918.020-56	1000 м
Радескан-X-1500-90 ⁰	ЮСДП.425918.020-59	1500 м
Радескан-X-2300-90 ⁰	ЮСДП.425918.020-62	2300 м


ОСОБЕННОСТИ РЛС РАДЕСКАН X-90°

Технические характеристики РЛС Радескан X-90°

Диапазон рабочих частот	X
Минимальная дальность обнаружения, не более	20 м
Ширина рабочего сектора, не уже	90 градусов
Ширина луча антенны по углу места, не уже	23 градуса
Точность определения дальности объекта	1 м
Внешние интерфейсы	RS-485, Ethernet, сухой контакт
Минимальное количество одновременно вычисляемых траекторий обнаруженных объектов, не меннее	32
Диапазон рабочих температур	-40°C+60°C
Потребляемая мощность, не более	10 Вт
Среднее время наработки на отказ, не менее	60 000 часов

Рабочий сектор обзора данной модели РЛС равен 90° по азимуту. Для каждой цели, обнаруженной РЛС в рабочем секторе обзора, определяются следующие данные: азимут цели, дальность до цели, вектор скорости (направление движения), ЗПР (эффективная площадь рассеяния цели). Полученные данные позволяют строить траекторию движения цели в реальном масштабе времени и управлять поворотной платформой, на которой установлена телекамера или тепловизор. Траектория движения отображается на мониторе оператора и может быть «наложена» на план местности или спутниковую фотографию местности. Алгоритмы обработки отраженного от цели сигнала, используемые в РЛС Х-диапазона, позволяют получить более стабильные данные в реальном масштабе времени, что приводит к надежному обнаружению цели и непрерывному отображению трека её движения.РЛС обеспечивает непрерывную круглосуточную работу, сохраняет работоспособность при:

- воздействии осадков в виде дождя и снега интенсивностью до 40 мм/ч;
- воздействии солнечной тепловой радиации;
- воздействии ветра со скоростью до 30 м/с;

РАДЕСКАН X-360°

радиолокационная станция

Исполнение

X-1000-180°-BT1

X-1000-180°-BT2

X-1000-180°-BT3

X-1000-360°-BT2

X-1000-360°-BT1

X-1000-360°-BT2

X-1500-180°-BT1

X-1500-180°-BT2

X-1500-180°-BT3

Обозначение

Исполнение	Обозначение
X-1000-180°	ЮСДП.425918.020-57
X-1000-360°	ЮСДП.425918.020-58
X-1500-180°	ЮСДП.425918.020-60
X-1500-360°	ЮСДП.425918.020-61
X-2300-180°	ЮСДП.425918.020-63
X-2300-360°	ЮСДП.425918.020-64

ВАРИАНТЫ ИСПОЛНЕНИЯ РАДЕСКАН X-360°

	000			
Исполнение	Обозначение		THE	
X-1500-360°-BT1	ЮСДП.425918.020-27	+	_	_
X-1500-360°-BT2	ЮСДП.425918.020-28	_	+	_
X-1500-360°-BT3	ЮСДП.425918.020-29	_	_	+
X-2300-180°-BT2	ЮСДП.425918.020-33	+	_	_
X-2300-180°-BT1	ЮСДП.425918.020-34	_	+	_
X-2300-180°-BT2	ЮСДП.425918.020-35	_	_	+
X-2300-360°-BT1	ЮСДП.425918.020-36	+	_	_
X-2300-360°-BT2	ЮСДП.425918.020-37	-	+	_
X-2300-360°-BT3	ЮСДП.425918.020-38	_	_	+

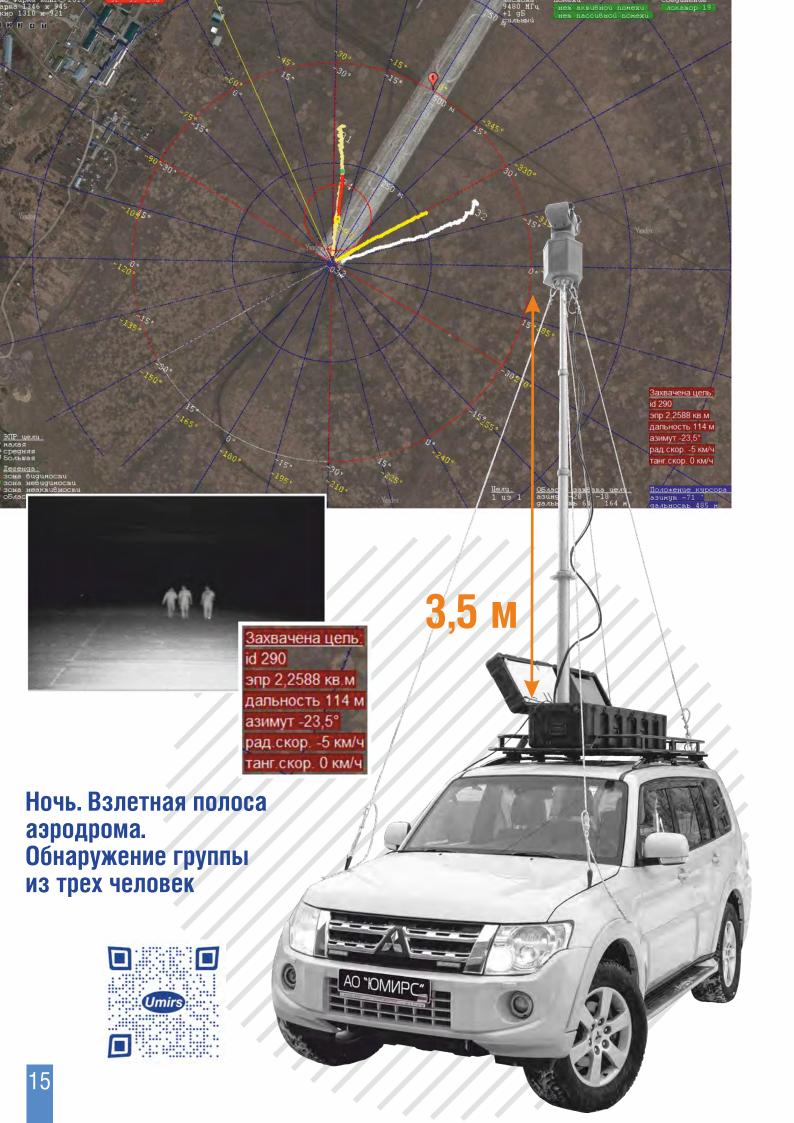
ВАРИАНТЫ ИСПОЛНЕНИЯ КОРТ РАДЕСКАН-X-500-360°

Технические характеристики

Диапазон рабочих частот	X
Минимальная дальность обнаружения, не более	20 м
Ширина рабочего сектора, не уже	3600
Диапазон радиальных скоростей целей, не менее	0,5120 км/ч
Точность определения дальности объекта, не менее	1 M
Точность определения азимута объекта, не менее	1 °
Минимальное количество одновременно вычисляемых траекторий обнаруженных объектов, не меннее	32
Диапазон рабочих температур	-40°C+65°C
Внешние интерфейсы	RS-485, Ethernet
Среднее время наработки на отказ, не менее	60 000 часов

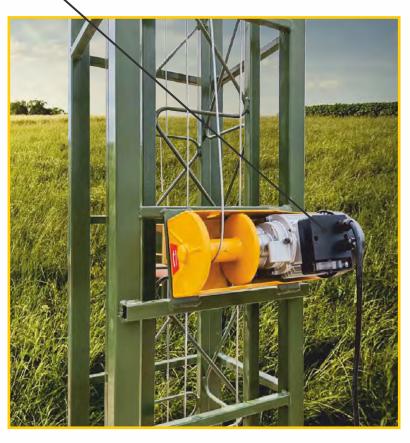
Радиолокационный комплекс ближнего радиуса действия, оснащенный видеокамерой с инфракрасной подсветкой. Комплекс имеет полностью цифровую реализацию алгоритмов синтеза зондирующих сигналов и обработки эхо-сигналов. В отличие от радара с механическим сканированием, радар с фазированной антенной решеткой ищет, обнаруживает и отслеживает несколько групп целей в разных направлениях одновременно с быстрым переключением направления луча.

Его преимущества включают многофункциональность, маневренность, скорость изменения, высокую скорость передачи данных, сильную помехоустойчивость и высокую надежность. Комплекс предназначен для обнаружения движущихся объектов (люди, животные, транспортные средства и т.д.) на открытой пересеченной местности, а также на водной поверхности акваторий.



Конструкция комплекса выполнена в виде ударопрочного пластикового кейса. Внутри кейса жестко вмонтирована пневматическая мачта с РЛС и видеокамерой с ИК-подсветкой. Приведение в рабочее положение (подъём мачты и выдвижение на высоту до 3,5 метров) осуществляется автоматически за счет встроенного аккумулятора. После подъёма мачты, кабели питания и интерфейса подключаются к комплекту мониторинга (ноутбук, ПК и т.п.) с установленным программным обеспечением.

Для выполнения задачи по охране объекта, кейс с комплексом может быть установлен на транспортном средстве, крыше здания, вышке и т.п.



Стационарный пост технического контроля

пост технического контроля со станком-подъемником

Автоматизированное рабочее место оператора

АО «ЮМИРС» Россия, г. Пенза, ул. Антонова, 3 Тел. +7 (8412) 69-82-72 Факс +7(8412) 69-97-01 E-mail: market@umirs.ru

Московское представительство АО «ЮМИРС»

г. Москва, Сормовский пр., д.5/1, оф.208 Тел./факс: (499) 722-66-01, (495) 740-48-14 E-mail: bel_umirs@mail.ru